
BBC: A Basic Block Compiler for Mitigating Branch
Miss Prediction Penalty in Mobile MPSoCs

Kyu Jung, Ph.D.
Adaptmicrosys

Paul Jung
Adaptmicrosys

Abstract—This paper proposes a basic-block fetch paradigm
that improves program control flow by fetching flow-control
instructions first, followed by other instructions in a timely and
accurate manner. By predicting multiple basic blocks early and
fetching instructions within fewer cycles, the instruction-fetch
paradigm achieves high-bandwidth accurate fetch through out-of-
order and parallel fetching. It also proves more resilient to branch
prediction and instruction cache miss latencies, resulting in
significant bandwidth enhancements for both out-of-order and in-
order CPUs.

Keywords—Basic Block Compiler; Lookahead branch
prediction; Instruction fetch bandwidth, High Performance
Computing (HPC) Performance and Low-power Operations

I. INTRODUCTION
This paper proposes an instruction fetch (i-fetch) paradigm to address
the high-bandwidth instruction fetching challenge for modern out-of-
order (OoO) CPUs. The paradigm reduces the i-fetch window and
instruction cache (i-cache) block sizes, uses multiple branches for
dynamic control flow determination, and fetches instructions from
different basic blocks in parallel. The paper also introduces a basic
block compilation (BBC) technique to transform control-flow
programs into decoupled programs. The proposed i-fetch paradigm
outperforms existing sequential and parallel frontend CPUs in i-fetch
bandwidth and power consumption.

II. BASIC BLOCK COMPILATION (BBC) TECHNIQUE
A program with control flow is made up of sequences of basic
blocks, which consist of variable-size contiguous instruction blocks
with flow-control instructions often located at the ends. The variable
size of these basic blocks and the taken branches at their ends make it
difficult to efficiently use i-cache space and can lead to wasted
energy in i-fetch hardware. Accessing a fixed number of contiguous
instructions (e.g., 16/8/4 instructions) is inherently limiting due to the
variable size of the basic blocks. Moreover, predicting branch
instructions of basic blocks must be done within one cycle to avoid
additional inefficiencies, such as the power consumption of the
branch prediction unit (BPU). One possible solution is to fetch the
branch instruction located at the end of a basic block before or at the
same time as the other contiguous instructions of the basic block.

III. FLOW CONTROL DECOUPLING FOR BRANCH PREDICTION
The program counter in a control-flow program tracks control flow at
the instruction level. To improve performance, flow-control
instructions can be decoupled from basic blocks, thereby converting
fine-grained instruction-level control flow into coarse-grained basic-
block-level control flow. This transformation enables decoupled
flow-control instructions to be fetched at least one cycle ahead or at
the same cycle as the contiguous instructions of the associated basic
blocks. This approach eliminates multi-cycle prediction latency and
reduces power consumption of the BPU. Previous studies have
shown that equivalent or higher prediction accuracies can be
achieved using predictors for the coarse granularity of control flow.
Decoupling flow-control instructions during compilation simplifies
parallel instruction fetching and enables the use of low-power

instruction caches for out-of-order CPUs. This approach is simpler
than the mechanism in previous research, which involves multiple
instruction sequencers, fragment buffers, and renaming units.

IV. DECOUPLING FLOW-CONTROL INSTRUCTIONS FOR
PARALLEL FETCH

The BBC technique splits programs into two subprograms: a
decoupled control-flow subprogram and a functional subprogram.
Flow-control instructions in basic blocks are modified to redirect
control flow to target locations and access contiguous instructions in
the functional subprogram. Non-flow-control instructions can be
added for parallel fetching by converting large basic blocks to
fragments or using basic blocks without flow-control instructions.
Instructions in the decoupled control-flow subprogram provide
access points to the associated whole or fragmented basic block.
Only necessary flow-control instructions are fetched in a sequential
or parallel manner, unlike the conventional i-fetch paradigm.

V. LOOKAHEAD OUT-OF-ORDER PARALLEL I-FETCH
In contrast to a sequential fetch paradigm, a parallel fetch paradigm
fetches blocks of contiguous instructions from multiple instruction
streams out of order. However, the flow-control instructions are
fetched in the order they are in the program. Despite the advantages
of out-of-order fetch, parallel fetch still has limitations for wide-issue
OoO CPUs due to the complexity and overhead of the i-fetch
hardware, multiple interrupt/exception services, and power
consumption of BPUs. In addition, large wrong-path instructions
increase i-cache pollutions and misses. While parallel fetch mainly
focuses on how to fetch, it is preferable to achieve both how and
what to fetch. Lookahead OoO parallel fetch provides a viable means
to achieve both important aspects of i-fetch.

VI. LOOKAHEAD BRANCH PREDICTION (LBP) FOR PARALLEL
I-FETCH IN THE BBC TECHNIQUE

In the BBC-based i-fetch paradigm, the BPU can always fetch
multiple flow-control instructions of basic blocks regardless of their
programmed order. This allows the BPU cycles to overlap with i-
fetch cycles and the cycles of other stages, including i-execution,
which is not possible in sequential or parallel CPUs. To elaborate, the
proposed i-fetch paradigm fetches multiple flow-control instructions
in advance to initiate the fetching of contiguous instruction blocks
from their associated basic blocks or fragments. Therefore, even if
the branch prediction process takes multiple cycles, it can still
produce a prediction result before all blocks are completely fetched,
as long as the prediction latency is shorter than the number of blocks.
This allows for more efficient overlapping of cycles between the
BPU and other stages, such as i-fetch and i-execution, which is not
possible with traditional sequential or parallel CPUs. The current
practice requires cascading, overriding, or special branch predictors
to hide multi-cycle branch prediction latencies. However, in the
BBC-based i-fetch paradigm, the multi-cycle latency of the BPU is
effectively hidden by concurrently fetching multiple instructions
from two different decoupled subprograms in a lookahead manner.
Fetching blocks of contiguous instructions from multiple threads is

Fig. 1. Recursive basic block packing and scaling operations implemented in
the lookahead code compilation in BBC

• Identify packable i-segment;
• Apply scaling parameters to the

packable i-segment; &
• Generate qualified i-segment

Qualified i-
segment?

Convert i-segments to
lookahead/compatibly
executable instructions

Bypass
i-packing &

i-scaling

End of
i-packing?

Set i-packing &
i-scaling order

Set i-packing &
i-scaling condition

Switch to next i-
packing &
i-scaling

Instruction Sets (i.e., ARMv7/8-A) Assembly/Executable Code

Yes No

Yes

No
End

one of the challenging tasks for designing a successful parallel fetch
mechanism. To fetch from multiple locations, multiple near-future
addresses in the dynamic control flow must be known by multiple
program counters. Existing parallel fetch mechanisms, such as those
introduced in references [1], have limitations due to the multiple
replicated hardware components, including multiple program
counters, sequencers, and buffers. In contrast, the BBC-based
paradigm effectively handles parallel fetches from the dynamic
control flow of the program with a simpler architecture and hardware
components. The proposed fetch only requires a single program
counter without any sequencer and multiple dedicated buffers. The
architecture is almost like a sequential i-fetch one.

VII. LBP FOR EFFICIENT BPU ACCESS
The out-of-order parallel fetch in our paradigm operates at the basic
block level and fetches only flow-control instructions, which need to
be predicted. This significantly enhances i-fetch bandwidth and
energy efficiency while providing alternatives to the limitations of
existing fetch paradigms. In our i-fetch paradigm, only the necessary
flow-control instructions are sequentially or in parallel fetched to the
BPU for prediction before fetching contiguous instructions of basic
blocks to the instruction queue. This lookahead fetch of flow-control
instructions is predicted by the BPU, and then reordered to determine
the branch behavior by the backend of the CPU. The multiple stages
of i-fetch in OoO CPUs, such as ARM's Cortex-A72/-A57/-A15, can
be a single fetch stage without pre-decoding the fetched instructions.
The lookahead fetch cycles of branches to the BPU overlap with the
fetches of contiguous instructions, hiding the latencies of taken
branch prediction.

VIII. DYNAMIC CONTROL FLOW TRANSITION WITH LBP
The parallel lookahead branch prediction fetches instructions
seamlessly according to the dynamic control flow of the program.
For example, up to three branches from consecutive basic blocks are
fetched to a BPU, which processes them one per cycle in order. The
remaining branches are discarded, and the next three branches from
the predicted location are fetched in parallel. As a result, the
contiguous instructions of the first basic block are fetched
immediately, and the three branches of the control-flow subprogram
are fetched at the same cycle. This prevents unnecessary instruction
fetching from wrong paths due to taken branches in the dynamic
control flow. In contrast, conventional parallel i-fetch mechanisms
must fetch all instructions from three basic blocks, regardless of the
predicted taken branch from the first basic block, and discard the
instructions fetched from the second and third basic blocks.
Furthermore, this lookahead dynamic control flow detection prevents
i-cache pollutions during i-prefetch and i-fetch.

IX. PARALLEL I-FETCH FROM TWO DECOUPLED SUBPROGRAMS
Parallel instruction fetching allows for better tolerance of latency
during instruction fetching in Out-of-Order CPUs. In this approach,
blocks of contiguous instructions from the control-flow subprogram
are fetched in parallel, which requires fewer cycles and less storage
than fetching all instructions from multiple blocks of the functional
subprogram. This allows for cache misses to be serviced multiple
cycles early. Additionally, the proposed fetch paradigm is simple and
low-power, with no prediction for prefetching flow-control
instructions and expandable primary i-caches for upper/lower levels.
This basic-block-level fetch paradigm can be applied for finer or
coarser granularity fetch mechanisms and for in-order CPUs.

X. LOW-POWER LOOP OPERATIONS EFFICIENCY
We designed small and low-power i-caches to reduce energy
consumption in our fetch paradigm. However, smaller caches are

more prone to cache misses, which can lead to performance
degradation. We found that a small L1 cache (8KB) resulted in a 6%
performance loss compared to a 128KB cache. To address this, we
implemented continuous fetch and execution beyond a cache miss
and overlapping multiple cache misses at the same cycles. Our
decoupled subprograms also showed better resilience to cache misses
due to their smaller size. Furthermore, our L2 caches are smaller and
faster than traditional L2 caches, which contribute to resilience
against cache misses and related stalls.

XI. LOOKAHEAD CODE COMPILATION (LCC) IN BBC
The lookahead code compilation in BBC utilizes parallel instruction
fetching to efficiently fetch blocks of contiguous instructions from
the control-flow subprogram. By fetching multiple instructions at
once, latency is reduced and overall performance is improved. This
technique optimizes cache resources, resulting in fewer cache misses
and faster instruction execution. The parallel instruction fetching
paradigm is a simple and low-power solution, suitable for fine or
coarse-grained fetch mechanisms and in-order CPUs, including
microcontrollers. Expandable primary i-caches for upper/lower levels
improve performance and prefetching flow-control instructions is not
required, simplifying the design and reducing power consumption.
LLC in BBC effectively improves Out-of-Order CPU performance
and energy efficiency while guaranteeing code compatibility. We
evaluated code compatibility using lcc, measured the number of
instructions fetched without being disrupted by a flow control
instruction, and performed a dynamic i-stream extension experiment
where the average number of instructions found in the extended i-
stream was 2.45x greater than that in an i-stream compiled by
gcc4.7.3. Without BBC, the average number of instructions was
15.31 instructions per i-stream.

XII. CONCLUSIONS AND FUTURE DIRECTIONS
The LLC in BBC proposes the use of a replicated fetch unit for trace-
granularity sequencing [2] to achieve high-performance processors.
Multiple sequencers may be a more resilient solution to i-cache miss
rates, but further research is needed to assess their effectiveness in
light of technology trends. The LLC team plans to address the issue
of waiting for earlier instructions to be fetched by renaming
instructions out of order and issuing them to execution units.

REFERENCES
[1] C. Kao, I. et al, “An embedded multi-resolution AMBA trace analyzer

for microprocessor-based SoC,” IEEE DAC '07, pp. 477-482, 2007.
[2] B Grayson, et al., “Evolution of the Samsung Exynos CPU

Microarchitecture,” ACM/IEEE 47th ISCA, pp. 40-51, 2020.

	I. Introduction
	II. Basic Block Compilation (BBC) Technique
	III. Flow Control Decoupling for Branch Prediction
	IV. Decoupling Flow-control Instructions for Parallel Fetch
	V. Lookahead Out-of-Order Parallel I-Fetch
	VI. Lookahead Branch Prediction (LBP) for Parallel I-fetch in the BBC Technique
	VII. LBP for Efficient BPU Access
	VIII. Dynamic Control Flow Transition with LBP
	IX. Parallel I-Fetch from Two Decoupled Subprograms
	X. Low-power Loop Operations Efficiency
	XI. Lookahead Code Compilation (LCC) in BBC
	XII. CONCLUSIONS and Future Directions
	References

